Skip to content

GIScience/tree-genera-mapping

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

73 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Urban Tree Genera Mapping in Baden-Württemberg, Germany

License: AGPL-3.0 Python 3.11+

A research pipeline for large-scale urban tree crown detection and tree genus mapping using very-high-resolution multispectral aerial imagery and LiDAR data.

The multispectral aerial imagery and LiDAR data provided by the LGL Open GeoData-Portal https://www.lgl-bw.de/Produkte/Open-Data/

logo.png

Overview

Urban Tree Genera Mapping provides an end-to-end, research-oriented workflow to:

  • Download and preprocess LGL Open GeoData (multi-spectral orthophotos & nDSM).
  • Build 5-channel raster tiles (RGB + NIR + normalized height).
  • Perform tree crown delineation and detection
  • Predict tree genera using deep learning
  • Apply a teacher–student learning strategy with human-in-the-loop curation
  • Scale inference to statewide coverage
  • Export results as GeoPackage for GIS analysis

The code accompanies an upcoming open dataset and scientific publication on regional-scale tree genera mapping in Baden-Württemberg, Germany.

Method Workflow

overview_workflow.png

Quickstart:

Clone the repository:

git clone https://github.com/GIScience/tree-genera-mapping
cd tree-genera-mapping

Create and activate a Conda environment:

conda env create -f environment.yaml
conda activate map-tree-genera

How to run the pre-trained YOLOv11l model 5CH imagery

  1. Download LGL products to Generate TileDataset for selected tile ids:
python scripts/fetch_tiles.py  \
 --tile-id 32_355_6048
  1. Run pre-trained YOLOv11l model to detect and classify tree genus:
python scripts/predict_yolo.py --tiles-gpkg data/tiles.gpkg --images-dir cache/tiles_5ch --model-path models/pretrained_yolov11l_tree_genus.pth --output-dir cache/initial_inference

Model Checkpoints

Task Model Name Modification URL Link
Object Detection (tree + genus) YOLO11l 5-Channel Input yolo11l_tree_genus.pt
Object Detection (tree) YOLO11l 5-Channel Input yolo11l_tree.pt

Dataset & Paper

This repository accompanies:

  • Dataset: {add}
  • Paper: {add}

If you use this code or workflow, please cite the accompanying paper. See CITATION.cff for details.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages