diff --git a/.github/workflows/mcxtrace-conda-basictest.yml b/.github/workflows/mcxtrace-conda-basictest.yml
index 09eda1dae..8032b7238 100644
--- a/.github/workflows/mcxtrace-conda-basictest.yml
+++ b/.github/workflows/mcxtrace-conda-basictest.yml
@@ -52,12 +52,17 @@ jobs:
channels: conda-forge
python-version: ${{ matrix.python }}
- - name: Setup conda
- id: setup-conda
+ - name: Get conda dependency list
+ id: conda-deps
run: |
./src/devel/bin/mccode-create-conda-yml -m mcxtrace -n mcxtrace -o dependencies.yml
- conda env update --file dependencies.yml
- echo DONE
+ cat dependencies.yml
+
+ - name: Update conda
+ id: update-conda
+ run: |
+ conda install mamba -y
+ mamba env update --file dependencies.yml
- name: Check versions
id: version-checks
diff --git a/mcstas-comps/contrib/Source_custom.comp b/mcstas-comps/contrib/Source_custom.comp
index 32d632f3c..83ac8c846 100644
--- a/mcstas-comps/contrib/Source_custom.comp
+++ b/mcstas-comps/contrib/Source_custom.comp
@@ -40,15 +40,25 @@
* Model description:
*
* The normalised Maxwellian distribution for moderated neutrons is defined by [1]
+*
* $M(\lambda)=\frac{2a^2}{T^2\lambda^5}\exp\left(-\frac{a}{T\lambda^{2}}\right)$
+*
* where
+*
* $a=\left(\frac{h^2}{2m_{N}k_{B}}\right)$
+*
* and the joining function for the under-moderated neutrons is given by [1]
+*
* $M(\lambda)_{um}=\frac{1}{\lambda(1+\exp(\lambda\chi-\kappa))}$
+*
*
* The normalised time structure of the long pulse is defined by [2]
+*
* $N_{t<=t_p}=1-\exp\left(-\frac{t}{\tau/n}\right)$
+*
+*
* $N_{t>t_p}=\exp\left(-\frac{t-t_p}{\tau}\right)-\exp\left(-\frac{t}{\tau/n}\right)$
+*
* where tp is the pulse period, tau is the pulse decay time constant, and n is the ratio of decay to ascend time constants.
*
* Parameters for some sources:
diff --git a/mcxtrace-comps/optics/Capillary.comp b/mcxtrace-comps/optics/Capillary.comp
index bd51c0de5..d8d853267 100644
--- a/mcxtrace-comps/optics/Capillary.comp
+++ b/mcxtrace-comps/optics/Capillary.comp
@@ -18,9 +18,11 @@
* A Capillary tube allowing for reflections along the tube. A material coating can be applied. Multilayer
* coatings may be handled by generating a reflectivity file (e.g. by IMD) and setting rtable=1.
* Waviness is implemented using the model described in
-* Wang et.al., J. Appl. Phys., 1996
-* where the grazing incidence angle $\theta$ is altered as
+* Wang et.al., J. Appl. Phys., 1996 where the grazing incidence angle $\theta$ is altered as
+*
+*
* $\theta' = \theta + \delta \theta \in [-min(theta,\Delta\theta,\Delta\theta]$
+*
* This ensures that reflected rays will never be scattered into the capillary.
* \Delta\theta is the value specified by the parameter waviness.
*