diff --git a/.github/workflows/mcxtrace-conda-basictest.yml b/.github/workflows/mcxtrace-conda-basictest.yml index 09eda1dae..8032b7238 100644 --- a/.github/workflows/mcxtrace-conda-basictest.yml +++ b/.github/workflows/mcxtrace-conda-basictest.yml @@ -52,12 +52,17 @@ jobs: channels: conda-forge python-version: ${{ matrix.python }} - - name: Setup conda - id: setup-conda + - name: Get conda dependency list + id: conda-deps run: | ./src/devel/bin/mccode-create-conda-yml -m mcxtrace -n mcxtrace -o dependencies.yml - conda env update --file dependencies.yml - echo DONE + cat dependencies.yml + + - name: Update conda + id: update-conda + run: | + conda install mamba -y + mamba env update --file dependencies.yml - name: Check versions id: version-checks diff --git a/mcstas-comps/contrib/Source_custom.comp b/mcstas-comps/contrib/Source_custom.comp index 32d632f3c..83ac8c846 100644 --- a/mcstas-comps/contrib/Source_custom.comp +++ b/mcstas-comps/contrib/Source_custom.comp @@ -40,15 +40,25 @@ * Model description: * * The normalised Maxwellian distribution for moderated neutrons is defined by [1] +*
* $M(\lambda)=\frac{2a^2}{T^2\lambda^5}\exp\left(-\frac{a}{T\lambda^{2}}\right)$ +*
* where +*
* $a=\left(\frac{h^2}{2m_{N}k_{B}}\right)$ +*
* and the joining function for the under-moderated neutrons is given by [1] +*
* $M(\lambda)_{um}=\frac{1}{\lambda(1+\exp(\lambda\chi-\kappa))}$ +*
* * The normalised time structure of the long pulse is defined by [2] +*
* $N_{t<=t_p}=1-\exp\left(-\frac{t}{\tau/n}\right)$ +*
+*
* $N_{t>t_p}=\exp\left(-\frac{t-t_p}{\tau}\right)-\exp\left(-\frac{t}{\tau/n}\right)$ +*
* where tp is the pulse period, tau is the pulse decay time constant, and n is the ratio of decay to ascend time constants. * * Parameters for some sources: diff --git a/mcxtrace-comps/optics/Capillary.comp b/mcxtrace-comps/optics/Capillary.comp index bd51c0de5..d8d853267 100644 --- a/mcxtrace-comps/optics/Capillary.comp +++ b/mcxtrace-comps/optics/Capillary.comp @@ -18,9 +18,11 @@ * A Capillary tube allowing for reflections along the tube. A material coating can be applied. Multilayer * coatings may be handled by generating a reflectivity file (e.g. by IMD) and setting rtable=1. * Waviness is implemented using the model described in -* Wang et.al., J. Appl. Phys., 1996 -* where the grazing incidence angle $\theta$ is altered as +* Wang et.al., J. Appl. Phys., 1996 where the grazing incidence angle $\theta$ is altered as +*
+*
* $\theta' = \theta + \delta \theta \in [-min(theta,\Delta\theta,\Delta\theta]$ +*
* This ensures that reflected rays will never be scattered into the capillary. * \Delta\theta is the value specified by the parameter waviness. *